THE HOLONOMY GROUPS AND THE REFINEMENTS OF A PRINCIPAL STEENROD BUNDLE

DAN I. PAPUC

Let (ξ, H) be a structure consisting of a principal Steenrod bundles $\xi = (E, B, p, G; \mathscr{A})$ and a closed subgroup H of G. We shall assume that all elements are C^{∞} differentiable.

It is well known [2, p. 57] that ξ and H define the commutative diagram

and the Steenrod bundles $\xi_0 = (E/H, B, p_0, G/H, G/N; \mathcal{A}_0)$, $\xi_1 = (E, E/H, p_1, H; \mathcal{A}_1)$. Here N is the largest invariant subgroup of G included in H, p_1 and p_0 are the cannonical maps, and \mathcal{A}_0 , \mathcal{A}_1 are trivialization atlases of ξ_0, ξ_1 respectively, cannonically defined by $\mathcal{A}, [4]$. ξ_1 is a principal Steenrod bundle.

The structure $(\xi; \xi_0, \xi_1)$ will be called the refinement of ξ defined by H, and we shall utilize the following notation:

 Δ^v , Δ^v_1 , Δ^v_0 are the vertical differential systems of ξ , ξ_1 , ξ_0 respectively. Throughout this paper, differential system = distribution, [2, p. 10]. $\Delta^v_N(\subset \Delta^v_1)$ is the differential system of E defined by the orbits of N as a transformation group on E. g, g, g, are the Lie algebras of G, H, N respectively. $\gamma = \{\Gamma\}$, $\gamma_1 = \{\Gamma_1\}$ are the sets of connections of ξ , ξ_1 respectively. $\varphi^0_\Gamma(\alpha)$ is the restricted holonomy group of Γ with reference point α .

In this paper we shall establish some properties of holonomy groups of connections of γ and γ_1 . More precisely:

In γ the following equivalence relation is introduced ([4], [5]): Two connections Γ , $\Gamma' \in \gamma$ defined by the horizontal differential systems Δ_{Γ}^H , $\Delta_{\Gamma'}^H$ are equivalent if $p'_1(\Delta_{\Gamma}^H) = p'_1(\Delta_{\Gamma'}^H)$. The equivalence class defined by $\Gamma \in \gamma$ has been denoted by Γ^* , [4, p. 381]. In the first section we shall make some remarks

Communicated by K. Yano, May 29, 1974.

on the relations which exist between the holonomy groups of two equivalent connections of ξ .

If Δ is a differential system of E satisfying the relations

$$(1) \Delta \cap \Delta_1^{\nu} = 0, \quad \Delta \oplus \Delta_1^{\nu} = \Delta^{\nu}, \quad \forall a \in H \mid R_a'(\Delta) = \Delta,$$

then we can define a map $h_a: \gamma \to \gamma_1$, ([4], [5]). In the second section we shall establish a relation between the holonomy groups of two connections of γ , which have the same image in h_a .

In the third section we shall make some observations on the relations which exist between the holonomy groups of connections $\Gamma \in \gamma$ and $h_{\Delta}(\Gamma) \in \gamma_1$, Δ being fixed.

1. The holonomy groups of connections belonging to the same class Γ^*

Let $\mathscr{FV}(E, \Delta_{\Gamma}^{H}), \mathscr{FV}(E, \Delta_{N}^{V})$ be the vector bundles defined over E as the base space, by the differential systems $\Delta_{\Gamma}^{H}, \Delta_{N}^{V}$ respectively. For the set Γ^{*} defined by Γ we have the theorem [5, Theorem 2]:

The set Γ^* is bijective with the set of homomorphism $\{T \mid T : \mathcal{F} \mathcal{V}(E, \Delta_T^H) \to \mathcal{F} \mathcal{V}(E, \Delta_N^V)\}$ satisfying the condition

$$\forall a \in H | R'_a \circ T = T \circ R'_a.$$

Here we shall prove two theorems concerning the holonomy groups of connections of Γ^* . To this purpose we shall first establish

Lemma 1. Suppose that $\xi = (E, B, p, F, G; \mathcal{A})$ is a Steenrod bundle, and Δ is a differential system of E satisfying the following three conditions

- 1) $\Delta \cap \Delta^{v} = 0$, 2) $\Delta \oplus \Delta^{v} = T(E)$,
- 3) for every curve of B there is a horizontal lift with respect to p (horizontal = tangent to Δ), uniquely determined by an initial point (we shall say that the differential system Δ has the unique path lifting property with respect to p).

Then Δ is involutive if and only if the horizontal lift with respect to p of an arbitrary closed zero homotopic curve of B is a closed curve of E.

Proof. Let Δ be an involutive differential system. Then for every point $x \in B$, there is an open neighborhood $U_x \subset B$ such that the intersection of the integral manifold of Δ , defined by an arbitrary point $\alpha \in p^{-1}(x)$, with $p^{-1}(U_x)$ be a differentiable manifold, diffeomorphic to U_x by p.

Let x = x(t) be an arbitrary curve of B, closed in x_0 and zero homotopic. By applying the factorization lemma to x = x(t) ([3, p. 47] or ([2, p. 284]) we see that every utilized lasso is contained in an above specified neighborhood U_x . The horizontal lifts of these lassos with respect to p and with a fixed point $\alpha_0 \in p^{-1}(x_0)$ as initial point, are also lassos. The product of these lassos is a closed curve, the horizontal lift of x = x(t) with respect to p.

Conversely, we shall prove that if the horizontal lift with respect to p of an arbitrary closed zero homotopic curve of B is a closed curve in E, then Δ is an involutive differential system. Consider the vector fields $\partial/\partial x^i$, $i=1,\cdots,n$, locally defined on B, and denote by Z_i , $i=1,\cdots,n$, the horizontal lifts of these fields with respect to p. The vector fields Z_i , $i=1,\cdots,n$, define a local base for Δ . Under our hypothesis we shall establish that $[Z_i, Z_j] = 0$. In order to prove this, consider the vector fields $\partial/\partial x^i$, $\partial/\partial x^j$, $-\partial/\partial x^i$, $-\partial/\partial x^j$ of B and their integral curves c_1, c_2, c_3, c_4 . Using the geometrical interpretation of $[\partial/\partial x^i, \partial/\partial x^j]$, [1, p. 28], we see that the equality $[\partial/\partial x^i, \partial/\partial x^j] = 0$ implies that the curve defined by c_1, c_2, c_3, c_4 is closed and also zero homotopic. The horizontal lifts of c_1, c_2, c_3, c_4 with respect to p are denoted $\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4$, and these curves are tangent to $Z_i, Z_j, -Z_i, -Z_j$. The hypothesis of the lemma implies that the curve defined by these four curves $\bar{c}_1, \bar{c}_2, \bar{c}_3, \bar{c}_4$ are closed and hence $[Z_i, Z_j] = 0$.

Theorem 1. Let $(\xi; \xi_0, \xi_1)$ be the refinement of ξ defined by H, and let Γ be a connection of ξ defined by the horizontal differential system Δ_{Γ}^H . If $\Delta_{\Gamma} = p_1^{\prime}(\Delta_{\Gamma}^H)$, then Δ_{Γ} is a differential system of E/H and has the unique path lifting property with respect to p_0 . Δ_{Γ} is involutive if and only if $\forall \alpha \in E \mid \varphi_{\Gamma}^0(\alpha) \subset H$. Proof. The relation $p = p_0 \circ p_1$ implies that Δ_{Γ} is a differential system of E/H.

Let x = x(t) be an arbitrary curve of B, and α_1^0 a point in E/H so that $p_0(\alpha_1^0) = x(0)$. If $\alpha^0 \in E$ and $p_1(\alpha^0) = \alpha_1^0$, then there is a unique horizontal lift $\alpha = \alpha(t)$ of x = x(t) with respect to p (horizontal = tangent to Δ_T^H), so that $\alpha(0) = \alpha^0$. The curve $p_1(\alpha(t)) = \alpha_1(t)$ is a horizontal lift of x = x(t) with respect to p_0 , and $\alpha_1(0) = \alpha_1^0$ (horizontal = tangent to Δ_T). If $\beta_1 = \beta_1(t)$ is another horizontal lift of x = x(t) with respect to p_0 so that $\beta_1(0) = \alpha_1^0$, then $\alpha_1(t) = \beta_1(t)$. Indeed, let Δ be a differential system of E satisfying conditions (1). Then Δ and Δ_T^H determine a horizontal differential system of a connection Γ_1 in ξ_1 . If $\beta_1 = \beta_1(t)$ is a horizontal lift of x = x(t) with respect to p_0 (horizontal = tangent to Δ_T), then the horizontal lift of $\beta_1 = \beta_1(t)$ with respect to p_1 (horizontal = tangent to horizontal differential system of Γ_1) is a curve $\beta = \beta(t)$, $\beta(0) = \alpha^0$. This implies that $\beta = \beta(t)$ is a horizontal lift of x = x(t) with respect to x = x(t) with respect to x = x(t) has the unique path lifting property.

Let x = x(t) be a closed zero homotopic curve of B. Denote by $\alpha = \alpha(t)$ the horizontal lift of x = x(t) with respect to p (horizontal = tangent to Δ_T^H) so that $\alpha(0) = \alpha^0$, and by $\alpha_1 = \alpha_1(t)$ the horizontal lift x = x(t) with respect to p_0 (horizontal = tangent to Δ_T) so that $\alpha_1(0) = p_1(\alpha^0) = \alpha_1^0$. From Lemma 1, Δ_T is involutive if and only if $\alpha_1(1) = \alpha_1^0$. This condition is equivalent to the condition $\alpha(1) \in p_1^{-1}(\alpha_1^0)$. Since $\alpha(1) = \alpha^0 \cdot a$, α being an element of $\varphi_T^0(\alpha^0)$, the last condition is equivalent to the condition $\forall \alpha^0 \in E \mid \varphi_T^0(\alpha^0) \subset H$.

Remark 1. The relation $\forall \alpha \in E \mid \varphi_T^0(\alpha) \subset H$ is equivalent to the relation $\forall \alpha \in E \mid \varphi_T^0(\alpha) \subset N$. For the former statement to be true it is sufficient that

at least one point $\alpha \in E$ should exist such that $\varphi_T^0(\alpha) \subset N$. It means that the last statement of Theorem 1 may be substituted by the following one:

The differential system Δ_{Γ} of E/H is involutive if and only if there is at least one point $\alpha \in E$ such that $\varphi_{\Gamma}^0(\alpha) \subset N$.

Theorem 2. Let $(\xi; \xi_0, \xi_1)$ be a refinement, and Γ^* a class of connections of ξ . If $\Gamma, \Gamma' \in \Gamma^*$, and $\varphi^0_{\Gamma}(\alpha^0)$, $\varphi^0_{\Gamma'}(\alpha^0)$ are the restricted holonomy groups of Γ, Γ' respectively with reference point α^0 , then

(3)
$$\varphi_{\Gamma}^{0}(\alpha^{0}) \cdot N = \varphi_{\Gamma'}^{0}(\alpha^{0}) \cdot N .$$

Proof. We shall establish the inclusion $\varphi_{\Gamma'}^0(\alpha^0) \subset \varphi_{\Gamma}^0(\alpha^0) \cdot N$. If $\alpha' \in \varphi_{\Gamma'}^0(\alpha^0)$, then there is a zero homotopic curve $x = x(t) \subset B$, such that its horizontal lift with respect to p (horizontal = tangent to $\Delta_{\Gamma'}^H$) determined by $\alpha^0 \in E$ be a curve $\alpha = \alpha(t)$ such that $\alpha(0) = \alpha^0$, $\alpha(1) = \alpha^0 \cdot \alpha'$. In the same way the horizontal lift of x = x(t) with respect to p (horizontal = tangent to Δ_{Γ}^H) determined by $\alpha^0 \in E$ is a curve $\alpha = \alpha(t)$ such that $\alpha(0) = \alpha^0$, $\alpha(1) = \alpha^0 \cdot a$, $\alpha \in \varphi_{\Gamma}^0(\alpha^0)$. But observing that $\Gamma, \Gamma' \in \Gamma^*$ we obtain $p_1(\alpha(t)) = p_1(\alpha'(t))$; the horizontal lift of x = x(t) with respect to p_0 , horizontal meaning that this lift is tangent to $\Delta_{\Gamma} = p_1'(\Delta_{\Gamma}^H) = p_1'(\Delta_{\Gamma'}^H)$, is uniquely determined by $p_1(\alpha^0)$. This implies that for every $0 \le t \le 1$ we have $\alpha'(t) = \alpha(t) \cdot b(t)$, where $b(t) \in H$. This relation is satisfied for all the points $\alpha^0 \in p^{-1}(x(0))$. It follows that we have $\alpha' = a \cdot b(1)$ and $\forall c \in G \mid \alpha'(t) \cdot c = \alpha(t) \cdot b(t) \cdot c$ so that $c^{-1} \cdot b(1) \cdot c \in H$. But this means that $b(1) \in N$ and that $\varphi_{\Gamma'}^0(\alpha^0) \subset \varphi_{\Gamma}^0(\alpha^0) \cdot N$.

The inclusion established implies also that $\varphi_{\Gamma'}^0(\alpha^0) \cdot N \subset \varphi_{\Gamma}^0(\alpha^0) \cdot N$. In the same way we can prove the inclusion $\varphi_{\Gamma}^0(\alpha^0) \cdot N \subset \varphi_{\Gamma'}^0(\alpha^0) \cdot N$ and hence $\varphi_{\Gamma}^0(\alpha^0) \cdot N = \varphi_{\Gamma'}^0(\alpha^0) \cdot N$.

Corollaries .1. If among the connections of Γ^* there is one whose restricted holonomy group with reference point a fixed point in E is included in N, then the restricted holonomy groups of all connections of Γ^* , with arbitrary reference points, are included in N (in this case the differential system $\Delta_{\Gamma} = p'_1(\Delta_{\Gamma}^H)$ is involutive).

2. If the restricted holonomy groups of two connections of Γ^* with the same reference point in E contain the group N, then these two groups coincide.

2. The holonomy groups of connections of a class $h_{-1}^{-1}(\Gamma_1)$

Let Δ be a differential system of E, which satisfies conditions (1). By means of Δ we can define a map $h_{\alpha}: \gamma \to \gamma_1$ [4, p. 380] as follows: If $\Gamma \in \gamma$, and the horizontal differential system of Γ is Δ_{Γ}^H , then $h_{\alpha}(\Gamma)$ is the element of γ_1 , whose horizontal differential system is $\Delta \oplus \Delta_{\Gamma}^H$.

Denote by $\overline{\Delta}$ the differential system of E which is maximal among all the differential systems of E satisfying the conditions

$$(4) \bar{\Delta} \subset \Delta , \forall a \in G | R'_a(\bar{\Delta}) = \bar{\Delta} ,$$

and recall the following theorem [5, Theorem 7].

Let $\Gamma \in \gamma$ be a connection, and $\Gamma_1 = h_d(\Gamma) \in \gamma_1$ its image in h_d . Then there is a bijection between the set $h_d^{-1}(\Gamma_1)$ and the set of homomorphisms $\{T \mid T : \mathcal{F} \mathcal{V}(E, \Delta_T^H) \to \mathcal{F} \mathcal{V}(E, \bar{\Delta})\}$ satisfying the conditions

$$\forall a \in G \mid R'_a \circ T = T \circ R'_a .$$

 $(\mathcal{F}\mathscr{V}(E,\bar{\Delta}))$ is the vector bundle defined over E, as the base space, by the differential system $\bar{\Delta}$.)

In what follows we shall utilize an invariant subgroup $N^{2} \subset G$, defined by Δ in the following way:

Let M^{d} be the set of elements of Lie algebra g defined by the relation

$$M^{d} = \bigcup_{\alpha \in F} (d\sigma_{\alpha}^{-1}(\bar{\Delta}(\alpha))) ,$$

where σ_{α} is the map $\sigma_{\alpha} : b \in G \to \alpha \cdot b \in p^{-1}(p(\alpha))$, and $\bar{\Delta}$ is the differential system of E defined by (4). Utilizing the relation

(7)
$$\forall \alpha \in E , \quad a \in G | R_{\alpha-1} \circ \sigma_{\alpha} = \sigma_{\alpha} \circ \operatorname{adj} a ,$$

we can prove that

(8)
$$M^{a} \cap g_{H} = 0$$
, $\forall a \in G \mid \operatorname{adj} a \cdot (M^{a}) = M^{a}$.

Denote by g^d the smallest linear space of g, which includes the set M^d . From (8) follows $\forall a \in G \mid \operatorname{adj}(g^d) = g^d$. Utilizing the relation $[X, Y] = \lim_{t \to 0} t^{-1}(\operatorname{adj} a_t^{-1} \cdot X - X)$, [2, p. 41], where $X \in g^d$ and $Y \in g$, we obtain that g^d is an ideal of g. Denote by N^d the invariant subgroup of G, which is connected and defined by g^d .

By means of N^{4} we shall have

Theorem 3. Let Δ be a differential system of E satisfying conditions (1), and $h_a: \gamma \to \gamma_1$ the map defined by Δ . For the restricted holonomy groups of two connections $\Gamma, \Gamma' \in h_a^{-1}(\Gamma_1)$ with reference to the same point in E, we have the next relation

$$\forall \alpha^0 \in E | \varphi^0_{\Gamma}(\alpha^0) \cdot N^{\underline{J}} = \varphi^0_{\Gamma'}(\alpha^0) \cdot N^{\underline{J}}.$$

Proof. In order to establish relation (9) it is sufficient to prove that $\varphi_{\Gamma}^0(\alpha^0) \subset \varphi_{\Gamma}^0(\alpha^0) \cdot N^d$ and that $\varphi_{\Gamma}^0(\alpha^0) \subset \varphi_{\Gamma}^0(\alpha^0) \cdot N^d$. If these two conditions are satisfied, then $\varphi_{\Gamma}^0(\alpha^0) \cdot N^d \subset \varphi_{\Gamma}^0(\alpha^0) \cdot N^d$ and $\varphi_{\Gamma}^0(\alpha^0) \cdot N^d \subset \varphi_{\Gamma}^0(\alpha^0) \cdot N^d$, and hence $\varphi_{\Gamma}^0(\alpha^0) \cdot N^d = \varphi_{\Gamma}^0(\alpha^0) \cdot N^d$.

We shall prove that $\varphi_{\Gamma}^0(\alpha^0) \subset \varphi_{\Gamma'}^0(\alpha^0) \cdot N^d$. Let α be an arbitrary element of $\varphi_{\Gamma}^0(\alpha^0)$. Then there is a curve x = x(t) of B, which is closed in $p(\alpha^0)$ and zero homotopic, the horizontal lift $\alpha = \alpha(t)$ of which with respect to p (horizontal = tangent to A_{Γ}^H) satisfies the conditions $\alpha(0) = \alpha^0$, $\alpha(1) = \alpha^0 \cdot \alpha$. Let us also

consider the horizontal lift $\alpha' = \alpha'(t)$ of x = x(t) with respect to p (horizontal = tangent to $\Delta_{\Gamma'}^H$). Evidently we have $\alpha(t) \cdot a(t) = \alpha'(t)$ where $a(t) \in G$. By means of Leibnitz formula we obtain

(10)
$$\frac{d\alpha'}{dt} = \frac{d\alpha}{dt} \cdot a(t) + d\sigma_{\alpha(t) \cdot \alpha(t)} \circ L'_{(\alpha(t))^{-1}} \frac{da}{dt}.$$

Denote $d\alpha'/dt - (d\alpha/dt) \cdot a(t) = X_{\alpha(t)\alpha(t)}$. Obviously, $X_{\alpha(t)\alpha(t)} \in \bar{\Delta}(\alpha(t)a(t))$. If we denote $X_{\alpha(t)} = R'_{\alpha^{-1}(t)}(X_{\alpha(t)\alpha(t)})$, then we have $X_{\alpha(t)} \in \bar{\Delta}(\alpha(t))$. Relation (10) is equivalent to

(11)
$$d\sigma_{\alpha}^{-1}(X_{\alpha(t)}) = R'_{(\alpha(t))-1}d\alpha/dt .$$

By the lemma [2, p. 69] and $d\sigma_{\alpha(t)}^{-1}(X_{\alpha(t)}) \in M^d$, $\forall t \in [0, 1]$, we obtain a unique curve $a(t) \in N^d$ such that a(0) = e, satisfying (11), differentiable of at least order 1. For this curve relation (10) is satisfied and hence $\alpha'(t) = \alpha(t) \cdot a(t)$. It follows that $\alpha(1) \cdot a(1) = \alpha'(1)$ and consequently $a \cdot a(1) = a'$ where a' is the element of $\varphi_{\Gamma'}^0(\alpha^0)$ defined by the horizontal lift of x = x(t) with respect to p (horizontal = tangent to $\Delta_{\Gamma'}^H$). In conclusion we have proved that to each element $a \in \varphi_{\Gamma'}^0(\alpha^0)$ we can associate an element $a_1 \in N^d$ such that $aa_1 \in \varphi_{\Gamma'}^0(\alpha^0)$. Then $a = (aa_1) \cdot a_1^{-1} \in \varphi_{\Gamma'}^0(\alpha^0) \cdot N^d$ and hence $\varphi_{\Gamma}^0(\alpha^0) \subset \varphi_{\Gamma'}^0(\alpha^0) \cdot N^d$. In the same way we can prove the inclusion $\varphi_{\Gamma'}^0(\alpha^0) \subset \varphi_{\Gamma'}^0(\alpha^0) \cdot N^d$. According to the first part of this proof, we obtain relation (9).

Remark 2. Let M be the union of sets M^{Δ} for all Δ satisfying conditions (1). If g_0 is the smallest linear space of g which contains M, then g_0 is an ideal of g, which defines an invariant subgroup N_0 of g. Evidently for every Δ we have $N^{\Delta} \subset N_0$, and if $\Gamma' \in h_{\Delta}^{-1}(h_{\Delta}(\Gamma))$ then

(12)
$$\forall \alpha \in E \,|\, \varphi^0_\Gamma(\alpha^0) \cdot N_0 = \varphi^0_{\Gamma'}(\alpha^0) \cdot N_0 \;.$$

If N_1 is an invariant subgroup of G such that $N_1 \cap H = \{e\}$, then $g_{N_1} \subset M$ and $N_1 \subset N_0$, where g_{N_1} is the Lie algebra of N_1 .

Remark 3. Relation (6) shows that the subgroup N^J is defined by the differential system $\bar{\Delta}$ satisfying conditions (4). Accordingly we can obtain the following result: Let $\Gamma, \Gamma' \in \gamma$ be a pair of connections. If we consider the homomorphism $T: \mathcal{F}\mathscr{V}(E, \Delta_T^P) \to \mathcal{F}\mathscr{V}(E, \Delta^V)$ defined by the couple Γ, Γ' [5, Theorem 1] and if $\operatorname{Im} T \cap \Delta_1^V = 0$, then between the restricted holonomy groups of Γ, Γ' we have relation (9) where N^J is substituted by the invariant subgroup N^{J_mT} of G.

3. The holonomy groups of connections $\Gamma \in \gamma$ and $h_{\mathfrak{d}}(\Gamma) \in \gamma_1$

Let Δ be a differential system of E satisfying conditions (1). If $\Gamma \in \gamma$ and

 $\Gamma_1 = h_d(\Gamma)$, then for the holonomy groups of the two connections we have [4, p. 380]

(13)
$$\forall \alpha \in E \mid \varphi_{\Gamma}(\alpha) \cap H \subset \varphi_{\Gamma_1}(\alpha) \subset H .$$

Lemma 2. Let $(\xi; \xi_0, \xi_1)$ be the refinement of ξ defined by H. For an arbitrary point $x \in B$, the restriction of ξ_1 to $p_0^{-1}(x)$ is a principal differentiable bundle $\xi_x = (p^{-1}(x), p_0^{-1}(x), p_1/p^{-1}(x), H; \mathscr{A}_x)$ isomorphic to (G, G/H), [6, p. 39].

Proof. ξ_x is a principal differentiable bundle with $p^{-1}(x)$ as the total space, $p_0^{-1}(x)$ as the base space, $p_1/p^{-1}(x)$ as the projection, H as the type fiber and structural group. The trivialization atlass \mathscr{A}_x is defined by means of the trivialization atlases of ξ and (G, G/H) in the following way: If (U, φ_U) is a trivialization map of ξ so that $x \in U$, and if (u, f) is a trivialization map of (G, G/H), then define a map $(V, \psi) \in \mathscr{A}_x$ by the relations: $V = U_1 \cap p_0^{-1}(x)$ where $U_1 = \varphi_{U_1}(U \times u)$ and $\psi = \varphi_{u_{12}}(V \times H)$ (see [4, Relation (19), p. 372]).

We can observe that for an arbitrary $a \in H$ the right translation of ξ_x coincides with the right translation of ξ_1 ,

Let α be a fixed element of $p^{-1}(x)$. Define an isomorphism $(i_{\alpha}, i'_{\alpha}): \xi_x \to (G, G/H)$ by the relations

$$i_{\alpha}: \beta = \alpha \cdot a \rightarrow a \in G ; \qquad i'_{\alpha} = 1_H .$$

Then we have $\forall b \in G | i_{\alpha}(\beta \cdot b) = i_{\alpha}(\beta) \cdot i'_{\alpha}(b)$.

Remark 4. The differential system Δ of E satisfying conditions (1) defines a connection Γ_{Δ}^{x} in every ξ_{x} . The holonomy group of Γ_{Δ}^{x} with reference point $\alpha \in p^{-1}(x)$ is denoted by $\varphi_{(x,\Delta)}(\alpha)$.

Remark 5. If the differential system Δ of E satisfying conditions (1) is fixed and if Γ_1 is a connection at ξ_1 such that $\Delta_{\Gamma_1}^H \supset \Delta$, then

(14)
$$\forall \alpha \in E \mid \varphi_{(x,A)}(\alpha) \subset \varphi_{\Gamma_1}(\alpha) \subset H , \qquad p(\alpha) = x .$$

Remark 6. 1. Relation (13) shows that if for a point $\alpha \in E$ the holonomy group $\varphi_{\Gamma}(\alpha)$ of a connection $\Gamma \in \gamma$ satisfies the conditions $\varphi_{\Gamma}(\alpha) \supset H$, then $h_{d}(\Gamma)$ for all Δ has H as a holonomy group.

2. Relation (14) shows that if Δ is a differential system of E satisfying conditions (1) such that the connection defined by Δ in ξ_x (x arbitrary in B) has H as holonomy groups, then all connections Γ_1 satisfying the condition $\Delta \subset \Delta_{\Gamma_1}^H$ have H as holonomy group.

Bibliography

- R. Bishop & R. Crittenden, Geometry of manifolds, Academic Press, New York, 1964, (Russian ed., Moscow 1967).
- [2] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. 1, Interscience, New York, 1963.

- [3] A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Ed. Cremonese, Rome, 1955, (Russian ed., Moscow, 1960).
- [4] D. I. Papuc, Sur les raffinements d'un espace fibré principal différentiable, An. Univ. Iasi, Ser. I, 18 (1972) 367-387.
- [5] D. I. Papuc & I. P. Popescu, Sur les connexions infinitesimales d'un raffinement d'un espace fibré principal, Rend. Accad. Naz. dei XL, Ser. 4, 22 (1972) 1-22.
- [6] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, 1951, (Russian ed., Moscow, 1953).

University of Timisoara Timisoara, Romania